32x^2-64x+32=1

Simple and best practice solution for 32x^2-64x+32=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 32x^2-64x+32=1 equation:



32x^2-64x+32=1
We move all terms to the left:
32x^2-64x+32-(1)=0
We add all the numbers together, and all the variables
32x^2-64x+31=0
a = 32; b = -64; c = +31;
Δ = b2-4ac
Δ = -642-4·32·31
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-8\sqrt{2}}{2*32}=\frac{64-8\sqrt{2}}{64} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+8\sqrt{2}}{2*32}=\frac{64+8\sqrt{2}}{64} $

See similar equations:

| 5t^2+4t+4=0 | | 7x+6=4x+1 | | 3x+2=(2x+13)3 | | 6d-11/2d=2d-13/2 | | Ix/3=12 | | x-6=3x-20 | | 5x+23=7x+9 | | 25+25=x-83 | | 19x=351 | | (8x+28)+(11x-19)=360 | | 0=16t^2+590t | | (4x-6)=18 | | 0=16t^2+590 | | 23=m+5 | | 3x-5(x-2)=-6=2x-12 | | 9^(x+3)=27 | | 0=-16t^2+610t | | (4x+10)^((1)/(4))-(7x+9)^((1)/(4))=0 | | 3^2m-1=20 | | 7x-5÷4=56 | | 2=x-19.5/4.5 | | 25*x^2+6025*x-500=0 | | (x)=x(x^2+3600) | | (7+x)2=14x | | 2x(2)+10=60 | | 0.3(p-4/3)=5-0.6p | | (x)=x(2x+3600) | | -3/8p=6 | | 2+b-7=89 | | 8s+3912-7s)=49 | | 180=46w | | 3÷10x+1,4=-x+2 |

Equations solver categories